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A method has been developed for the exact and approximate calcula-
tion of the equilibrium composition and thermodynamic properties of
mixtures of nonideal chemically reacting gases described by an equa~
tion of state in virial form, Certain characteristics of the thermody-
namics of diatomic dissociating gases are analyzed.

Chemically reacting gas mixtures are now widely
used as working media and heat-transfer agents in
various new industrial processes. The pressures and
temperatures are frequently such that in calculating the
thermodynamic properties of the reacting gases we must
allow for the fact that they are not ideal.

However, there have been virtually no studies in
which a theory of the thermodynamic properties of
nonideal chemically reacting gas mixtures is developed
in any detail. Even in such an important modern hand-
book as [1], a nonideality correction for the dissocia-
tion~equilibrium constant is given only for the case of
a mixture governed by the van der Waals equation. On
the other hand, it is widely believed that taking into
account the nonideality of chemically reacting gas mix-
tures does almost nothing fo improve the accuracy
with which their composition can be calculated [2].
Although, as we shall show below, this viewpoint is
not always sufficiently justified, all the calculations of
the thermodynamic properties of chemically reacting
gases with which we are familiar have been made up
to the highest pressures without consideration of non-
ideality effects [3—5].

In what follows the effect of nonideality on the com-~
position and thermodynamic properties of chemically
reacting gas mixtures is examined by the standard
methods of chemical thermodynamics [1, 6, 7] and the
theory of nonideal gases [8].

Let a series of independent reactions take place in
the system in question and let the equation of the k-th
reaction have the form

v A4, =0, (1)

i

The composition of the system can be described by
mtroducmg for each reaction the degree of completion
8 k), which varies from 0 to 1 as reaction (1) proceeds
from left to right. If before the reactions began {all
S(k) = 0), the molecules A; were present in the number
Ngi, in the mixture we have

N; = Ny +E NE® V0 g, (2)
(k)

’I(fg quantities N(k} in {(2) are so selected that at all
B =1

N (B = D=N,; + ZN&”’ VB 5 0, (3)
1.3

{The equal sign in (3} holds for one or more starting
substances given in the "minimum necessary" amount
required for all reactions (1) to proceed completely
from left to right; in this sense the other substances
are present "in excess.") In the general case finding
the numbers Ng }is scarcely a trivial problem, and
we shall not dwell on it here.

At equilibrium the free energy of the system F(T, V)
is minimum [6] for given temperature T and volume
V, so that for each of the reactions the equation

OF \ [ 0F | oN, _
(6ﬁ(k) )r.v— Z( oN, )T,vaﬁm =90 @

is satisfied. Considering that

oF — '
= (T, V, Ny, B®),
( N, )‘r,v i w B 9

which represents the partial chemical potential of the
i-th component in the mixture as calculated for a sin-
gle molecule [6, 7], and using (2), we obtain a system
of equations for the composition of the system B(

as a function of T and V:

E WAT, V, N, B9(T, V)]vi0 =0. (6)

i

We obtain the thermal equation of state of the sys-
tem (pressure p as a function of T and V) by differen~
tiating F(T, V) with respect to V:
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In view of (4), at equilibrium the second term in
(7) is equal to zero, and hence the thermal equation of
state of an equilibrium system in which chemical re-
actions are taking place has the same form as for a
nonreacting mixture of the same composition:

_ oF _ OF 7
P (av )T, O (av Jrw, (7a)

Similarly, in the form of the calorific equation of
state, the chemical reactions in the system also go
unreflected: the entropy of the system is
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=_(.‘3’i) - _(ﬁi) . (8)
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We note that if the individual reactions proceed un-
der nonequilibrium conditions, the right side of some
of the equations in (4) may be nonzero. At the same
time, the equilibrium of the system with respect to
the translational and internal degrees of freedom of
the molecules may be almost complete, which makes
it possible to use the derivatives of F with respect to
V to find p and with respect to T to compute S. In this
case we obtain the following pressure and entropy cor-

rections:
chem R a ﬁ(k) o

(k)

_ Z (6ﬂ(k) )TN(ME W

(k)

Aschem:_Z( (::;) )r v(a;;‘k) )v N

(k)

iy

o (0p™ k (k) =
=X () D
(k)
owing to the nonequilibrium character of the chemical
reactions. However, finding the relation between B(k)
and T and V under these conditions is a kinetic prob-
lem,

To determine the composition of the mixture it is
necessary to find the relation between the chemical
potentials ji; of the mixture components in (6) and the
parameters indicated therein, and then solve that sys-
tem of equations for ﬁ(k)

In the case of nonideal gases the free energy of the
mixture can be written in the form of a virial series
[8] in powers of 1/V:

F= ZN,‘, —1-——22N,N——+
EEB“NNN G

i

(9)

where

/2
:d_—"le eV(ka)S 2, .
Nl nh2

Here, b;j(T) and c;j{(T) are virial coefficients, taking
into account the interaction between particles of the
species indicated by the subscripts (the virial coeffi-
cients, calculated per mole, B; J(T) and Cle(T) are
expressed in terms of b1J and c1 k and Avogadro's n(Lilm—
ber Ny: Bjj = NpBij, Cijk = NAc1 k and so on); f}
is the free energy of a partlcle of the i-th species in a
mixture of ideal gases of the given composition; zj is
its statistical sum over the internal degrees of free-
dom.

Differentiating (8) in accordance with (5), we obtain

—nonid

H: +A e 3 (10)
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where
—id .z- m, kT \3/2
; =—FkT In | 2 {222 ; i1
z o (e
—nonid 9
Ap™ =T TZnibii+
+&T %E Zninkc,,-k e (12)
i &
Here,
n= NV (13)

is the number of particles of the i-th species per unit
volume,

Using (2) and (13), in (10)—(12) we can express all
the n; in terms of ,8( k) and as a result of the numerical
solution of system (6) for given V and T find B( )(V T)
and consequently ny(V, T) with any desired degree of
accuracy.

In practice it is usually more convenient to describe
the system by means of the variables T and p, also
introducing the mole fractions xj of the components:

x= N‘./z N:.

In these variables the components of (10) can be writ-
ten as follows:

(14)

o= [2L ()T}
A =pl2 jzx,.b,-,- — 21 }k:x,-xkb,k |+
_2(2; XXXt ) (Zx,-b:; )+
3 2 * e ] /kT +. (12a)

ok

Now the quantities B(k) can be found from the system
of equations (6) as a function of T and p.

In most cases of practical importance, however,
taking into account the nonideality of the gas mixture
has a relatively weak (though not negligible) effect on
the result of the composition calculations. If, in gen-
eral, we neglect the effect of nonideality, the "ideal"
mixture composition ﬁ('lé) can be obtained from the sys-
tem of equations

t

i [T, V. Now i (T, V)] 9 =0, (15)

where ﬁ%d are found from Eqs. (11) and (11a). For ex-
ample, with Eq. (11), system (15) can be written in

the standard form

[ oyt =
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where Kﬁlk)id('r) is the ideal-gas equilibrium constant
of the reaction,

. . 3/2 ik}
Ll LI M

The latter is related to the well-known pressure con-
stant Kg{)(T) [6] by the obvious equation

; v(ik)
Ty = K () (&kTY (18)

If we take ,8(.%) as the zero-order approximation to the
exact solution, in the first (and usually sufficient) ap-
proximation B(k) can be obtained by assuming that the
contribution of terms with Aﬁ?omd in (6) is small and
computing these quantities for ﬁgg)

ST VLB 8 V80 o 0.
By analogy with (16) we can now write
®

M =11 (nw +

‘ A l(k) >
L R
(k)
where
BT,V =KP T x

— id
S Oa TV, 8
xexp |~ —

kKT

(20)

Undoubtedly, the system of eguations (19), (20) is
much easier to solve for B(k) than the starting sys-
tem (8) with (10)—(12).

As an example we will consider the determination
of the composition of a diatomic gas dissociating un-
der equilibrium conditions:

AT 24,

and we confine ourselves to the region of parameters
described by an equation of state with the second vir-
ial coefficient only. In this case in accordance with
(12) :

A" = 28T (ribyy + mab),

- profid

Apis ™™ = 2RT (nybrg + nyby)

(it is understood that by, = byy), and in accordance with
(20)

Ky (T, V) =niin, =

= K (T) exp [— 21ni (21 — byy) +
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where
KT = (niyni. (22)

In the same approximation

2 K, (M P
Xi 2 £ i
T T p o (et

+ 2x10 218 byy + (x19) byy) —
—2 [xid (265 —by2) + xéd (2615 ~— bay)l }

Using (21), we can, in the simplest case, easily
estimate the effect of nonideality on the composition
of the chemically reacting gas mixture. Using (14),
we can write the ideality correction for the equilibrium
constants in the form

exp {2 (5128 — B 44 2B — B |
where pR = Npk. Consequently, the deviation of the
equilibrium constant is determined by the difference
of this exponential from 1. Assuming, for simplicity,
that xzid ~ 1 and that the nonideality is small, for the
relative error due to neglecting nonideality in calcu-
lating the equilibrium constant, and hence the compo~
sition of the mixture, we obtain

2
SK, = ;}%T (2321"322)]- (23.)

We will estimate the value of (23} for dissociating
hydrogen. At temperatures of the order of several
thousands of degrees the quantity By, can be estimated
using the Buckingham 6~exp potential {9], and Byy us-
ing the Lennard-Jones 6—12 potential {10]. We find
that By, = 10 cm®/mole, By ~ 15 cm®/mole.

Thus, inaccordance with(23), 6Ky ~ 0.5 p/T, where
p is in atm, and T in °K. At the rather high tempera-
ture T = 5000° K and the very moderate pressure p =
= 100 atm 0K, ~ 0.01, i,e., the error reaches 1%.

Of course, it becomes much greater at lower tempera-
tures and higher pressures.

Thus, for calculations of improved accuracy, es-
pecially in calculating the transport coefficients in
chemically reacting gas mixtures, which are very sen~
sitive to errors in mixture composition, it is neces-
sary to take nonideality into account.

Apart from their practical usefulness, the formulas
obtained have a certain methodological interest in re-
lation to research in the thermodynamics of dissociat~
ing gases. For example, the equation of state of a non-
ideal diatomic dissociating gas can be written both in
the standard form for a mixture of monomers A; and
dimers A,, following from Egs. (8} and (6):

PIRT = (ny + 1) + 2, 2 by (TY -+
i

+ 222 o (T) 4+ oy (24)
ik
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and in the form of a virial series for N starting atoms
(N = N; + 2N2):

pikT =n+b(Tyn* +c(Myn®* +d(Tint 4 ..., (25)

The equivalence of forms (24) and (25) is known [11,
12].

Using (21} and (22}, we can obtain the expansion of
ny and n, in powers of m:

2
Ny = A — e 0

2

4 2
na Kéd ( K‘d 2b11 -+ b12 )n:i
1, 2 ( 2

My == e I d 3
Kid K&\ K§

-an+bm)n" 4

and then the relation between the virial coefficients of
series (24) and (25):

b = by — VK, (26)

4
c=tyy + ~—y

( i — Dt bu) (27)

In (26} by is the contribution to b{T) due to the inter-
action of two unbound atoms Ay, while

— VK3 = byguna@) (28)

is nothing other than the contribution to b(T) due to the
formation of bound states A, of the starting atoms.
Similarly, in{(27) cyy is the contribution to ¢(T) due to
the interaction of three unbound atoms A, while

—Ié%a“ (“‘éa“ 2b11+ b12 ) == Cpound (T) (29)
is the bound part of the third virial coefficient c(T)
(provided that the bound states of the three atoms are
not formed simultaneously).

Whereas expressions of the type (26) and (28) for
the second virial coefficient are well known [13, 14],
formulas (27) and (29), which make it possible to sep-
arate and compute the bound and unbound components
in the third virial coefficient, areanundoubted achieve~
ment of the present method, {(The formulas needed to
caleulate the quantities in {(27) and (29) are known: for
e(T) they are given in {8], for byy(T) in [14], for by (T)

in [8]; a method of calculating KjA(T) has been beauti-
fully worked out {15]. The method of calculating by
and byy has been improved by the author,)

Series (25) does not converge satisfactorily if an
appreciable number of molecules appears in the gas,
since the values of the virial coefficients b, ¢, and
d are anomalously large. In practice this series can
be used only in the region of total dissociation. In the
region of partial dissociation, however, it is neces-
sary to base the calculations on formula (24}, explic-
itly faking into account the existence of a mixture of
unbound atoms and molecules, which causes a certain
amount of inconvenience connected with the necessity

INZHENERNO-FIZICHESKII ZHURNAL

of making a preliminary calculation of the mixture
composition.

It is possible to construct a "hybrid® of Egs, (24)
and (25), explicitly summing the most weakly converg-
ing part of the latter. Accordingly, we will first con-
sider how Eq. (25) will appear when our system is a
mixture of ideal gases—atoms and meolecules:

pIkT = nld + nid,

Finding n d and nj i erom (22), we obtain

id

n . K ——————
PIT = == — - [1—V 11 8w/KF| =
T i
{2 14+ VitsnKE ]

Then expanding the right side of (30) in powers of
n/K}4, we find

20

Tt v Y

plkT = n— n4 (Kld)z
The relation between expressions (25) and (31), taking
account of (26)~(29), is obvious,

It can be shown that at temperatures T < (0.2—
0.3)Dg/k, where Dg is the dissociation energy of the
molecule, bygyng in Eqs. {26) and(28) is almost equal to
b, i.e., the quantity ’

B (T) = by (T) = b(T) — bygunalT) (32)
is much smaller in absolute magnitude than b(T). Sim-
" ilarly,
¢ (T) =C (T) —4{b bound (T)]z (38)
is also a small quantity as compared with ¢(T), and so
is
& (T) = d{T) — 20 g (TP (34
as compared with d(T), while at the temperatures in
question
o' (T (M| Jd' o) =D /AT
-~ L AN o £ St <<1. (35}
{bmf fe( | ldm)l

Taking (32)—(34) into account and comparing Eq,
(31) with the starting equation (25), we can write a new
equation identical with (25):

1 1 .
/kT:n{~—+ — ]+b T)n? +.
P 2 14 Vigswkd , (

+ M +d(Mnt+.... (36)

However, other things being equal, the series on the
right side of (36) already will converge incomparably
more rapidly than the starting series (25), which is
immediately clear from (35). .

If we formally substitute ~b(T) for Kid in (30) and
perform all the subsequent calculations as before, in-
stead of {36) we obtain
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P/kT:n[—;-;- 1+VT1~W;”(TT1] n
+ ciijey (TY 1P -+ dijny 1t + - . (37)
where
cuip (T) = c(T) —4 6D, (38)
diien (T) = d(T) — 20 [ (T)I°. (39)

Series (37) is identical with expression (36), but, as
may be seen from (38) and (39), the coefficients
S(iik) and d(ijkl) are of the same order as ¢' and d' in
(33]) and (34). However, the term proportional to the
square of the density, which in (86) takes into account
the interaction of two unbound atoms, is absent from
the right side of series (37), since it has been incor-
porated in the radicand, Moreover, the structure of
the coefficients in (38) and (39) is simpler than that of
the quantities in (33) and (34), and to determine them
it is not at all necessary to introduce the concept of a
mixture. A method of calculating C(ijk) has been de-
veloped by the author. Thus, series (37) is as simple
as the starting series (25). However, it converges
much more rapidly and is therefore suitable for prac-
tical calculations.

Inverting series (37) with respect to pressure, we
obtain the following equation for the volume per atom:

— 1 kT{l
U s — == o]
n b

2 ( e 1/1_—75_"—%1 )+
+ Cipy (T)(fy‘,‘)2+ } (40)
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